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Inequalities and variational principles 
in double-diffusive turbulence 

By MELVIN E. STERN 
Graduate School of Oceanography, University of Rhode Island, Kingaton, RI 0288 1 

(Reoeived 31 January 1980 and in revised form 9 April 1981) 

An inequality pertaining to the energetics of the boundary layer in turbulent pipe 
flow and turbulent thermal convection is generalized for the double-diffusive convec- 
tion problem, where a semi-inhite layer of cold, fresh and light water overlies another 
hot, salty and dense layer. The smallest possible salt/heat-flux ratio equals the ratio 
of the square roots of the respective diffusivities. The bound is asymptotically realiz- 
able according to a variational principle. A bound on the relative fluxes is predicted 
when another solute is added (‘multiple diffusion’). 

1. Introduction 
The statistically steady solutions of the Navier-Stokes equations for turbulent pipe 

flow or turbulent, thermal convection are highly non-unique (degeneracy), and a 
thermodynamically based variational principle has therefore been proposed to  select 
the realizable solution (Stern 1980, hereinafter cited as 11). The dynamically possible 
class of solutions provide the constraints, one of which is an ‘inequality pertaining to 
the energetics of the boundary layer’ (Stern 1979, hereinafter cited as I), which 
is referred to as ‘BLI ’. This empirically inferred and generalizable inequality serves 
to bound from below the mean shear profile (pipe flow) or the mean vertical temperature 
gradient (convection at  very large Rayleigh number). The purpose of this paper is to 
generalize BLI and test it  in the much more complex double-diffusion experiment, in 
which there are two coupled mean fields which need to be bounded, The variational 
principle (11) will also be applied to this case (see the end of $2) .  

Past work on double diffusion (Linden & Shirtcliffe 1978, hereinafter cited as LS), 
is reviewed first in $ 2, and a slight modification of a boundary condition is made to 
avoid conflict with observations (Griffiths 1979) when another solute (‘triple diffusion ’) 
is added. The weakest form of BLI is developed first ($3)  so as to minimize the number 
of ad hoc qwlitative assertions, and the stronger form of BLI appears in $4. The weak 
form is then applied to the problem of triple diffusion, but comparison of the main 
result (5.12) with experiment cannot be made because measurements of only two of 
the relevant fluxes are available. 

But for double diffusion the predicted bound on the salt/heat-flux ratio does agree 
with experiments and the bound is apparently realized in an asymptotic limit (of 
‘small ’ flux). This remarkable coincidence is interpreted as evidence favouring the 
validity of the variational principle which is summarized at the end of $ 2. 
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2. Previous work and preliminary assumptions 
Double-diffusive convection (Veronis 1968; Huppert & Moore 1976) can be realized 

by placing a deep layer of relatively cold, fresh (and light) water above another deep 
layer of hot, salty (and denser) water. Some time afterwards the vertical ( z )  variation 
of mean density p ( z )  is as shown in figure 1.  The density inversion occurs because the 
diffusivity K~ of the horizontally averaged thermal field p(z )  exceeds the diffusivity K~ 

of the salt field &z). The F ( z )  field thereby tends to spread more in z than does the 
B(z) field, and this means that the unstably stratified F field will dominate in the 
determination of the density gradient p’(z) at z > 0 (or at z 4 - h) .  The gravitational 
instability of these regions initiates small-scale convection motions at the outer edges 
of the ‘core’, in which region the stabilizing salinity gradient is dominant. The small- 
scale and intermittent instabilities at  the upper core edge ( z  = 0, as defined subse- 
quently) rise like plumes into the convective layer (LS, figure 2), and this fluid is 
replaced by relatively homogeneous water sinking from above. This process removes 
the steadily diffusing heat and salt from the core, and also maintains the large-scale 
and energy-bearing motions in the convective layer. A statistically steady h is thereby 
established, provided that D is sufficiently large so that the temporal drift in AT, A S  
(figure 1) is negligible (LS). 

The non-dimensional quantity T, in all that follows, denotes the product of the tem- 
perature with the (constant) thermal expansion coefficient, and the non-dimensional 
S denotes the contribution of the salinity to the equation of state. This is given by 
p = S - T, where p is the non-dimensional density. These densimetric units are also 
used for the convective fluxes, so that the total heat flux FT and salt flux Fs, will have 
velocity units. By a proper identification of the S, T symbols the results which follow 
can be used in the (much more convenient) isothermal experiments, where two different 
substances (like sugarlsalt) are used as the double-diffusers. 

As indicated above, the equilibrium core thickness h is not an externally controllable 
parameter, but like (Fs, FT) is dependent on gAS, gAT, KT, K~ and the kinematic vis- 
cosity v. Under certain conditions (most notably (2.10)) the relationship between FT 
or Fs or h and (gAT, gAS, K ~ ,  KT,  u )  is independent of D --f 03 (figure 1)  and independent 
of time. These qualitative aspects of the LS model are consistent with observations 
except when R = AT/AS + 1. At this limit the system is on the verge of becoming 
top-heavy, and the interface becomes so chaotic that the picture of a diffusively 
balanced core must be modified. 

For somewhat larger R attention is directed to the level z = 0 in figure 1, where the 
mean density p ( z )  equals the far-field density F(o0) .  From now on, T, S and p are all 
measured relative to their far-field values, and the defining relation for z = 0 becomes 

where the prime denotes a derivative in all that follows. The z = 0 level is physically 
significant because all of the overlying mean field is lighter than the far field ( z  = a), 
and conditional instability exists in the sense that the fluid at  z > 0 is able to rise to 
infinity by means of its own buoyancy. On the other hand, the underlying fluid in the 
diffusive core is very stable, and figure 1 shows that 



Inequalities and variational principles in double-diflwive turbulence 107 

tP 
//////,////,////////////////////////////, 

As# 

& Convective or turbulent layer 

+ 
//////////////////////////////////. 

FIUURE 1. Schematic diagram of the horizontally averaged temperature F(z), salinity Biz), and 
density p ( z )  for two deep layers with given overall temperature and salinity differences (AT, A8). 
The two non-conducting boundaries are separated by a large distance D,  so that the temporal 
Lrun-down’ of AT, AS is negligible. (The spring attached to the upper boundaries measurea the 
statistically steady pressure P.) 

Because of this stability LS w u m e  that both of the horizontally averaged convective 
fluxes vanish at  z = 0 and in the underlying core. These (positive) convective fluxes are 

(2.3a, b )  

where wo(x, y, z, t )  is the local turbulent vertical velocity, To(%, y, z, t )  is the deviation 
of the temperature from F, and So(%, y, z, t )  is the salinity fluctuation. The total fluxes 
F,, FT are independent of z if D = co, and otherwise decrease linearly for z 0 in the 
run-down experiments (LS). 

Several reasons exist for modifying the (LS) assumption that woTo = 0 = woSo at 
z = 0, one of these being a conflict with Griffiths’ triple-diffusion experiment ( $ 5 ) .  
On physical grounds, moreover, one would expect an entrainment effect at z = 0 to 
be produced by the large eddies in the well-mixed layer. The motion produced by 
these at z = 0 should sweep up (entrain) some of the stable fluid at  the core top, in 
much the same way as in the penetrative thermal convection experiment of Deardorff, 
Willis & Stockton (1980), where a reversal in sign of the buoyancy flux at the edge of 
the stable layer has been measured. By appealing to this related experiment, as well 
as to plausible physical grounds, we assume that wo To - woSo changes sign near z = 0, 
i.e. 

- - 

- -  
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and this qualitative assumption is testable. But the vertical average of woTo- woSo 
must be positive, and also 

is required by the global mechanical-energy integral. 

equalities yields 

where ( 2 . 3 ~ '  b )  have been used. Since 

-- 

'S < FT (2.5) 

All terms are positive in equations (2.4)-(2.5)' and thus the product of these in- 

P E ( F T + ~ T p )  < FT(FS+~bR' )  ( - 4 h  < z < 0 ) ,  

and B' are both negative, we then obtain 

Equation (2.2) already implies a lower bound 

r = -  Fs Ks  

F ~ ' G ,  
for this flux ratio, and a sharper bound will be found (I 3) by introducing another 
dynamical constraint. From (2.4)-(2.5) we also obtain 

and ( 2 . 3 ~ '  b )  then yield 

where +AT ,+AS are values of the mean (T,  8) fields at the level of symmetry (figure 1). 
With the help of (2.1 a) this inequality becomes 

r-7R 
F(0)  G *AT-  

r--7 ' 

Since all temperatures are positive by convention, the right-hand side of (2.8) must 
be positive. Using (2.7) and (2.5) we then get 

r l  
R < - < - .  

7 7  
( 2 ~ 0 )  

The first two terms in this inequality give the LS cutoff point: 

R = !  (2.11) 
7' 

at, which T(0) vanishes in (2.8), and vanishing FT is demanded on physical grounds. 
In  this limit the equilibrium core thickness must approach infinity as h N KT AT/FT. 

The basis for sharpening (2.7) will be the well known 'power integrals' for the 
production-dissipation of kinetic energy, temperature variance and salinity variance 
in the entire fluid (figure 1). If this is bounded by rigid non-conducting surfaces at 



Inequalities and variational principles in  double-diffuaive turbulence 109 

z = - fh  z = o  zal. z b  

FIGURE 2. The gradients for the upper half of figure 1 are sketched in the solid CUNBB, with 
FS/KS and E)T/KT being the respective values of the salinity, and temperature gradients at the 
centre of the diffusive core. The broken-line trial functione (-F:(z), - q ( z ) )  are hinged at the 
2 = 0 datum level (see text), and zb is the thickness of the thermal boundary layer. 

z N & 00, and, if the time derivatives of the variances are negligible, then these power 
integrals are 

(2.12) 

(2.13) 
- -  

-WoSos' (Z)  = Ks(VS,,", (2.14) 

where Vo = {uo, vo, wo} denotes the non-divergent velocity and its {z, y, z} components, 
and the second bar denotes a z-average. Another useful power integral is obtained by 
multiplying the field equation for aTo(z, y, z, t)/at with So@, y, z, t ) ,  by multiplying 
(Fick's) equation for aS0/at with To, and by adding and averaging the resulting equa- 
tion for a(ToSo)/at to obtain (Stern 1976, p. 206) - -- -- - -  

- w ~ T ~ S ' - W ~ S ~ T '  = (K~+KT)VTO.VSO. (2.16) 

If averages are taken only over a finite vertical interval, such m the boundary layer 
in figure 1, one must add energy-export terms to (2.12)-(2.15). In $ 3  we focus these 
global equations on the boundary layer by means of further amumptions. The reader 
may prefer to pass directly to this section, without interrupting the argument with 
the following recapitulation of the variational principle (11). The latter is only used 
to interpret the result of BLI, and is therefore somewhat independent. 

For the classical problem of thermal convection (11) between two rigid, conducting, 
horizontal boundaries our general thermodynamic-selection principle implies that the 
mean pressure H acting at one boundary is an extremum (maximum or minimum) 
provided that the heat flux as well as the temperature difference between the boun- 
daries is held constant in the variation with respect to the degenerate class of solutions. 
The significance of these three parameters is that they memure the 'state of the 
reservoir', P being the momentum transport to the latter. The general application of 
the theory requires an identification of all the reservoir state parameters, and their 
inclusion as constraints in the variational problem. Some of these constraints may be 
ignored (or discarded) to obtain an approximate variational solution. 

In  the run-down experiment to which figure 2 refers, the deep (D + 00) mixed layers 
are identified as the reservoirs, whose temperature and salinity (AT, AS)  we are free 
to fix. Moreover, the slow (D + m) temporal decrease of AT, AS is also identified as a 
reservoir state parameter since the interfacial fluxes (Fs, F,) are in fact determined 
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from the measurement of these decreases. The boundary pressure i”, which could be 
measured by the deflexion of the spring in figure 1, is obviously a reservoir state para- 
meter as in 11. Are there other higher-order statistical parameters which should be 
counted as reservoir state parameters, and included as constraints in the extremization 
of i” with AT, AS, F,, FT held constant? If so, then we agree to discard them in the 
sense or’ a variational approximation. 

Now Fs,F, depend explicitly on the strugme of p(z), B’(z) whereas the momentum 
transport P has an explicit dependence on w: (11) or on the properties of the large eddies 
in the mixed layer. We therefore propose to manipulate the variational principle and 
to discard constraints, so as to focus the result on the boundary layer exclusively. 
Extremization of P with F,, FT held constant is equivalent to extremization of F, with 
FT, i” held constant. We now discard the P constraint and merely seek an extremum 
of F, with F, (and AT, AS) held constant or, equivalently, ‘an extremum of T = Fs/FT 
with a suitably defined non-dimensional FT held constant. The only dynamical con- 
straint used in this first-order variational problem is the inequality in § 3. It is rather 
obvious, therefore, that the solution of the variational problem will lie on the bounding 
surface of the inequality in the function space to which it applies. At this level of 
approximation the variational principle merely converts a dynamical inequality into 
an equality. 

3. The inequality pertaining to the energetics of the boundary layer 
The BLI constructed for pipe flow and thermal convection (I) was based on the 

plausible idea that the mean field gradients in the viscous conductive boundary layers 
are sufficiently large so that some perturbation is capable of releasing more energy 
than it dissipates in the boundary layer (suitably defined). The quantification of this 
idea involves a truncation of the power integral a t  the edge of the boundary layer, 
and the replacement of the fluctuating fields by ‘test perturbations’ which scan the 
permitted function space. The calculation thereby determines bounds on the mean 
gradients such that the power integral can be satisfied. The formalism is essentially 
a means of defining and bounding the boundary-layer Reynolds or Raleigh number 
in shear flow or thermal turbulence. The following generalization will do essentially 
the same thing for double diffusion, except that there are at  least two Rayleigh 
numbers for this problem as we!l as a Prandtl-number and Schmidt-number depen- 
dence. Thus dimensional reasoning is of no avail, and a real challenge is presented to 
our formalism. 

The first step in the construction involves the separation of each of the realized 
profiles {p(z), B’(z)} into two parts, the simple parts being denoted by {F&,(z), S’i,(z)} 
and the other parts being the respective residuals. Each of the two simple parts con- 
sists of three broken straight lines (figure 2), one segment of which is drawn tangent 
to the corresponding realized profile from the point at  z = 0 on each of these profiles. 
Thus, the simple curves satisfy FAo(0) = F’(O), &,(O) = B’(O), and the simple curves 
bound the real curves from below by virtue of this tangent construction. The simple 
curves are broken straight lines like the F&), s;(z) in figure 2, except that the latter 
are not necessarily tangent to the real profiles. The (p:, 8:) are a more general class of 
curves (all of which are ‘hinged’ at  z = 0 on the real profile) in which the curves 
(PAo, A!?:,,) will be embedded. The realized thermal boundary-layer thickness zm is 
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defined by the tangent intercept, and is slightly larger than the zb value indicated in 
figure 2. 

It would be nice to have an equally unambiguous way of dividing up the real 
turbulent fluctuations (Vo, To, B0), such that one of its parts (V,, O,, Xm) could be 
associated with the boundary layer, and with {FLo(z), 8io(z)}.  Because the boundary- 
layer (0 < z < zm) instabilities export energy to the convective layer z > zbo we would 
then be inclined to assert that the ‘ production ’ of velocity, temperature, and salinity 
variance (cj.  (2.12)-(2.14)) as defined respectively by 

( 3 . 0 ~ )  

exceeds the corresponding ‘ dissipation ’ term in 

Since we do not know how to make such a division of the turbulence, the idea will 
be quantified by asserting that some function (V,, Oco, Xco) exists for which ( 3 . 0 ~ )  
exceeds (3.0 b ) .  The class of permissible functions are non-divergent and satisfy side 
conditions at  z = O,zm as indicated below. For given ( -F‘ (O) ,  - f ? ( O ) ) ,  and for 
zbo --f 0, there exist no permissible functions V,, Oc0, Xco such that (3 .0a)  exceeds (3.0b), 
and therefore our assertion will set a lower bound on the realizable zbo. We showed (I) 
that the same assertion was both correct and non-trivial for the shear and thermal 
turbulence problem, and, if the same thing can be done for the present problem, then 
we may claim that BLI ‘captures’ a general property of turbulent boundary layers. 

Since our assertion is a definite inequality, it must be equally valid if ( -  Fi0(z), 
-8io(z))  in ( 3 . 0 ~ )  is replaced by somewhat smaller values (-FL(z),  -SL) in the more 
general class of hinged profiles, provided the differences (Tio - F:, 8io - SL) are SUE- 
ciently small. This observation allows us to embed the measurable fields (FLo, S&) in 
the more general class. 

Furthermore, the definite inequality with respect to the (V,, O,, X,) functions 
implies the existence of other permissible functions V,, S,, X, for which production 
equals dissipation, the reason being that the relative importance of dissipation can 
always be made to increase by merely decreasing the horizontal wavelength of 
(V,,O,,C,) (I). This observation allows us to write BLI in the more convenient 
form of an equality containing ‘dummy’ variables like (V,, S,, X,). By permitting 
these to scan the whole permissible range we thereby obtain inequalities or bounds 
for real parameters like p’(O), B’(O), zbo, Fs2FT. The physical content of this elaborate 
construction is that the real { - p ( z ) ,  - S’(z)} can be (respectively) bounded below 
by some member { - TL(z), - 8&)} of the class of hinged profiles, each of which is 
capable of satisfying the truncated power integral for some V,, O,, Z,. 

The BLI conjecture is testable, and if correct then the same inequality must hold 
for a large class of neighbouring (degenerate) solutions of the field equations, these 
neighbours having somewhat different values of F’(z),  f?(z) ,  FT, F, than the realized 
solution. Thus BLI provides a constraint on the class of degenerate dynamical 
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solutions to which we may apply our variational theory. Accordingly ($32), we 
minimize r = for a given FT (and for given AT, AS, KT, K ~ ,  v), and subject to 
BLI. Of particular interest is the minimum r a t  the LS cutoff point where FT + 0. 

A variational theory of turbulence also allows us to obtain interesting quantitative 
approximations by 'borrowing.' observed qualitative features, and also by taking 
certain liberties with trial-function representations. For example, the boundary 
conditions at z = (0, zb) on (V,, O,, &) need not be exact, but they should be 'passive' 
and incorporate the idea that the unstable perturbations are not driven by fluxes 
from outside the boundary layer. These boundary conditions on V,, O,, X, should also 
incorporate the idea that the vertical convective fluxes at z = 0 are small compared 
to those at  z = zb, where energy is exported to greater heights. The significance of 
these side conditions will appear in the following restatement of BLI. 

The solid curves in figure 2 are sketches of dynamically possible temperature and 
salinity gradients. The trial functions {-FA@), -A!&)} mentioned previously, are the 
broken straight lines 'hinged' at z = 0 on the corresponding ( - F'(z),  -B'(z)) profiles. 
The trial functions are also required to satisfy the defining relations (2.lb), and thus 
they are given by 

1 (2 < O), 

-pA(z) = -T'(o) x ( l - Z / z b )  (0 < z < zb), (3.1) 

( z  > zb); 

(2 < 01, 

(0 < z < zb/a), 

(0 

-si(z) = -p(o)  x 

(z > Z b / a ) ;  

where zb, a are free parameters. When (3.1)-(3.2) are substituted in (3.3), and when 
(2.2) is noted, we get 

B'(0) a==--. 
T'(0) ' 

The inequality (2.6), on the other hand, implies 

.T 'S a<-- 
K s  FT - 

(3.4) 

The trial functions V,, O,, Ec release as much energy in 0 < z 6 zb aa they dissipate, 
which means that they satisfy the truncated power integrals (2.12)-(2.16), or 

zb -- -- -lo (wcOcS~+w,C,T~)dz  = ( K ~ + K ~ ) J :  (VO,.VX,)dz, (3.9) 
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as well as the continuity equation 

.and certain 
‘ side conditions ’ (3.10) 

to be mentioned subsequently. The content of this construction emerges with the 
assertion that any dynamically possible ( - p(z), - B’(z)), including the realized one, 
can be bounded below by some ( - pi(z), - 8&)) for which (3.6)-(3.10) can be satisfied 
[using an allowable (V,, O,, C,)]. The main assertion implies 

for some allowable zb. By using ( 3 . 1 1 ~ ~ )  in (2.8) we get 

(3.11 a )  

(3.11 b )  

(3.12) 

where minzb is the smallest value of with respect to all permissible test functions 
(and with T’(O), B’(0) held constant). The evaluation of minzb aa a function of T’(O), 
B’(0) and the use of (2.6), will then give an inequality which all dynamically possible 
solutions (having different Fs, FT) must satisfy. The main variational principle (2.1 1) 
is then applied to this constraining inequality. 

Some kind of boundary condition (3.10) for (V,, O,, C,) a t  z = 0 and z = z b  is neces- 
sary, for otherwise the minimum in (3.12) will be zero and the construction will be 
vacuous. The specification of this poses a difficulty, and the simplest resolution would 
be to assume some simple form like: sin (7rz/2zb) sin kx sin ly for (w,, O,, C,). This form 
will satisfy 

(3.13) 

(3.14) 

is maximal at  z = 0; (3.16) 
aar - 
dz2 

C, = f O c ;  (3.16) 

where f is a free parameter: Equations (3.13)-(3.16) obviously include test functions 
that are far less restrictive and arbitrary than the sinusoidal ones, and thus we 

Equations (3.13)-(3.16) substituted in condition (3.10). (3.17) propose : 

This constitutes the weak form of BLI, and a stronger form (4.1)-(4.2) will be intro- 
duced in $4. Note that there is no inconsistency between (3.13), (3.14) and the finite 
flux value implied by (2.4), because the latter is attributed to the large-scale eddies 
while the former only describes the smaller-scale instabilities in the boundary layer. 
On physical grounds these should have rather highly correlated temperature-salinity 
fluctuations, so that (3.16) is a reasonable trial approximation. Moreover, (3.16) 
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greatly simplifies the calculation by making (3.9) redundant if (3.7) and (3.8) are 
satisfied.Bydividing (3.7)into (3.8),andbyusing(3.1), (3.2), (3.13), (3.16)oneobtains 

Equations (3.7) and (3.8) also imply f > 0, (3.6) implies 1 - f > 0, and therefore 

O < f < l .  
By introducing the new function 

r O ( c )  r(&b) 

equation (3.18) transforms to 

B’P) fare, f1r,(S)(1-5)d5 0 
-=- 
“(0) 

K~ f: ro(c/a) ( 1 - 6 )  d[ * 

(3.18) 

(3.19) 

(3.20) 

The function r,([) must satisfy the same side relations as r(z) in (3.13)-(3.15). 
Thus I?;([) is a non-increasing function of 5, with r,(O) = 0 = F;(O), and consequently 

(3.21) 

which has the property 

This implies that if @ < 0 in any region then Qcc c 0, and @@(. is positive. However, 
@ = 0 at [ = 0 and also at  [ = 7, and therefore 0 must be non-negative at  all inter- 
vening [; for otherwise @ would be negative everywhere between two of its zeroes, 
@OCc would be positive, and the identity 

would be contradicted when the limits of integration are taken as these two zeroes. 
This proves that a([) 3 0 for 0 Q 6 Q 7, and (3.21) gives 

r,K) Z ro(T)52/72 (0 Q c Q 7) 

rO(k-7) 2 E2ro(7) (0 Q x Q 1). 
or 

By setting 6 = l/a (equation (3.4)), and by setting 7 equal to [ we get 

(3.22) 
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Equation (3.20) now becomes 

and (3.4) and (3.19) then give 

The final result obtained with the help of (2.6) is that 

115 

(3.23) 

(3.24) 

(3.25) 

and thus we see that all dynamically possible solutions of the equations of motion 
(including the realized one) must have a flux ratio in excess of 

(3.26) 

-- 
This bound can only be reached iff -+ 1 or wc8c-wcZc 4- 0, which suggests that a 
small non-dimensional buoyancy flux is a necessary condition for the realization of 
(3.26). Further support of this conjecture is given in 5 4, but one cannot be sure that 
the minimum salt/heat-flux ratio will not be raised when additional constraints are 
added. 

4. Stronger constraints 

conditions 
The weak side conditions (3.13)-( 3.16) will now be replaced by the stronger boundary 

The maximum (we, 8,) amplitudes imposed here at  the z = zb boundary are in accord 
with our picture of an intermittent instability exchanging fluid with the convective 
layer (z  > z,), and the same boundary condition was used for the test function in our 
earlier work. The ‘slippery’ (or Rayleigh free boundary) condition (4.2) imposed at 
the entraining boundary is arbitrary, but a ‘rigid’ boundary condition a t  z = 0 will 
just increase the numerical coefficient at the end of (4.8). Equation (3.10) is again used 
to simplify the calculation, to make (3.9) redundant, and to retain the important 
integral (3.18). 

The latter equation and (3.6) and (3.7) are made non-dimensional by using z, as 
the length scale, and also by using 

z A-V, V l ~ L V c ,  Tl= 
KT z,( - P(0))’ 
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where A-l is a non-dimensional constant. The three integral equations in question 
then become 

By eliminating A, and by using (3.12) to eliminate zb, we get 

2 min- 
1-f' 
I 

(4.3) 

(4.4) 

where 

(4.5) 

and where the minimization in (4.4) is with respect to V,, TI. 
Variations of I/( 1 - f )  with respect to T,, give an Euler equation in which V2Tl is 

proportional to w,. Since (w,, Tl) both vanish at 6 = 0 (4.2) it  follows that a2Tl/ac2 
also vanishes at  5 = 0. Equation (4.2) then implies that the third derivative of w T l  
vanishes, or a%G/az2 has an extremum at z = 0. This extremum is tentatively 
assumed (and subsequently verified from the eigenfunctions) to be a !rna-cimum, so 
that (3.16) is still satisfied, and the inequality (3.23) still holds, i.e. 

where (2.6) has been used in the last part of (4.6). 

(4.6), and if - p ( 0 )  (in (4.4)) is replaced by the lower bound 
The inequality (4.4) will therefore be preserved iff is replaced by its lower bound 

- K T ~ ( O )  = FT- (W~O)~ ,O > F T - ( G ) r = O  > FT-Fg, 

where (2.4) has been used. Equation (4.4) then becomes 

and it only remains to compute the purely numerical value of min I. 
The first of the two terms on the right-hand side of (4.5) haa, in view of the boundary 

conditions, a minimum value equal to the critical Rayleigh number for the onset of 
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pure thermal convection between two slippery boundaries located at  6 = 0 and 6 = 2 
(c = 1 is the plane of symmetry), and thus 

The minimum value of (4.5) is certainly greater than this because the last term in (4.5) 
is certainly greater than unity. Therefore the inequality is preserved if minI is 
replaced by 27n4/4(24). 

A sharper bound can be obtained (if desired) by tentatively wuming and - subse- 
quently verifying that the eigenfunction which minimizes (4.5) is such that wlTl is 
a monotonic increasing function of 6 < 1, in which case we have the identity (I) 

= 2, 
1; a d 6  1 

/‘fl(1-WC So’(1-5)dC 
2 

and therefore 

The use of this in (4.7) then gives 
I 2  g+. 

For given AT,AS all dynamically possible solutions, including the realized one, 
must have Fs, FT values which satisfy the inequality (4.8). Our variational principle 
requires the realized values of Fs, FT to lie approximately on the boundary surface of 
the inequality, which is given by 

(4.8a) 

One of the main conclusions from this is that the asymptotic result (3.20), or 
r = 7+ holds only if the non-dimensional buoyancy flux on the right-hand side of 
(4.8a) is small, and some experimental numbers will be given in $0. 

Since the flux ratio must be r < 1, and since the density ratio must be R >, 1, (4.8a) 
also implies 

This bound for the buoyancy flux should be relevant when R + 1. 

5. Multiple diffusion 
A straightforward generalization of (3.25) and (3.20) will be obtained when another 

solute is added to the bottom layer in figure 1, with A X  denoting its excess non- 
dimensional concentration relative to the upper layer, and with d x / d z  < 0 denoting 
the horizontally averaged concentration in the statistically steady state. Both the 
diffusivity tcX of this substance and K~ are to be smaller than K ~ ,  i.e. 

K X  < KT, Ks < KT. (5.1) 
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The concentration of X must now be added to our previous expressions for non- 
dimensional density, and thus the z = 0 datum level (where p(0)  = 0) is now given by 

The trial functions ( - Ti, - s:, - xi) are again ‘ hinged ’ at z = 0, with the temperat- 
salinity profiles given by (3.1) and (3.2), and with the new profile given by 

1 (2 < 0) 

-X’(O) 1 -axz / zb  (0 < z < Z b / U X ) ,  (5.3) i (’ ’ z b / a X ) ,  

ax 
- c =  

dz 

where ax (like a )  is a free parameter which measures the thickness of the solute 
boundary layer relative to the thermal boundary layer. Because of (5.1) the relative 
boundary layers will be constrained by 

ax > 1 (a > 1) .  (5.4) 

Since the trial profiles are required to satisfy (5.2)) the substitution of (5.3)) (3.1)) (3.2) 
into this relation gives 

The trial perturbation X, for the X-fluctuation, like the salinity trial function Zc 
(3.16), is taken to be perfectly correlated with O,, i.e. 

x, = fx e,, c, = fO,, ( 5 4  

so as to render the power integrals for the production of S, T correlation, 8, X corre- 
lation, and X, T correlation redundant when the three power integrals for T ,  S, X 
variances are satisfied. The latter three equations imply that the free parameters 
( fx, f )  are both positive. The generalized mechanical energy equation (3.6) containing 
the buoyancy term gwc(Oc-Zc-Xc) implies that 1 -f-fx must be positive, and 
therefore 

0 <fx < 1 - f <  1.  (5.7) 

Equations (3.7) and (3.8) are unaltered, equations (3.13)-(3.15) are unaltered, and 
therefore (3.23) is unaltered. A completely analogous relation for X ’ ( O ) / p ( O )  is 
obtained when the T-X variance equations are combined, viz. 

By solving this for l / a x ,  by solving (3.23) for l / a ,  and by substituting the results 
in (5 .5 )  we get 

and the elimination of fx by (5.7) yields 
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Consider this function G ( f )  = af *+ b( 1 -f)*, where (a, b )  are the coefficients in (5.9). 
Since G " ( f )  < 0, G has a single extremum at f = (1 + (b/a)$)-l, the value of which is 
given by 

G ( f )  < a[l + (b/a)t]-* + b(b/a))  [ 1 + (b/a)#]-*. 

Further simplification gives G ( f )  6 (a# + b#)%, and consequently (5.9) becomes 

(5.10) 

In correspondence with (2.3 a, b )  we also have 

Fx - w z  
K X  

-X' (z )  = 3 

where w z  is the solute convective flux, and Fx is the constant total flux. By eliminat- 
ing the gradients in (5.10) we get 

(5.11) 

The last step is the generalization of the entrainment inequality (2.4), which now 
implies that the total solute flux woSo+w,-,Xo at (and below) z = 0 must exceed the 
heat flux w x .  Equation (5.1) then implies that the bracketed term in (5.1 1) is positive, 
from which result we conclude that, 

- -  

(5.12) 

for all dynamically possible solutions. The realized one, according to our variational 
principle, is the bound 

(5.12a) 

provided the non-dimensional buoyancy flux is small (cf. (4 .8~) ) .  

6. Conclusions and comparisons 
Our purpose has been to test some general ideas pertaining to turbulent boundary 

layers by examining the implications for the (rather complex) double diffusion problem. 
The generalization of BLI implies that ( K ~ / K ~ ) *  is the smallest possible salt/heat- 

flux ratio, and our variational principle implies that this bound should be realized 
when the total buoyancy flux is small (4.8~~). BLI also predicts an upper bound (4.9) 
for the total buoyancy flux when AT + AS. For triple diffusion the bound (5.12~) 
on the flux ratios should be realized when the buoyancy flux is small, and the prediction 
could be tested by future experiments which measure all three fluxes. 

Double-diffusive measurements of r have been obtained using either heat/salt or 
salt/sugar, and it appears that the ( K ~ / K ~ ) *  asymptote is realized near the 'cutoff' 
value of R, when the fluxes are small. The most accurate ( I 5  yo) determination of r 
is for the salt/sugar experiment, and it is remarkable that individual flux measure- 
ments 'scatter' very much more (this surely must be a real and physically significant 
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statistical effect). Despite the latter fact some comparison with the present theory is 
possible. 

For this purpose the bound (4.8a) is rewritten as 

where 

is a nominal non-dimensional flux which LS have used in their figure 4 to plot the data. 
Most of the latter have fluxes smaller than F$ = 1.0, which value occurs at approxi- 
mately R = 1.1, r = 0-6. The substitution of these three values and 7 = K ~ / K ~  into 
the right-hand side of (6.1) gives a small number, 6 x from which the small 
departure 

r-74 
r+ 
- 

of r from its asymptotic value 74 may be computed. Since the left-hand side of (6.1) 
equals twice (6.2), the value of the latter is 3 x This predicted departure is much 
smaller than the experimental error: 50 x but the two numbers become com- 
parable when the largest measured flux F$ 21 3 is used. We conclude that the observed 
constancy of r in the sugar/salt experiments is consistent with the theory. In  the 
heat/salt experiments of Turner (1973, figure 8.14) the largest ‘reliable’ flux is 
F$ = 3 at R = 1-3, and from his figure (8.15) we see that the corresponding value of r 
isapproximately 0.6 (although r = 0.15 at larger R). Thesevaluesand7 = K ~ / K ~  = 0.01 
make the left-hand side of (6.1) equal to 0.98, which is indeed larger than the right- 
hand side (= 0.09). Although this is consistent with BLI (4.8), the bound predicted 
by the first-order variational theory is not reached by an order of magnitude. 

It is possible to obtain the main results (3.26), ( 5 . 1 2 ~ ~ )  by a simple mechanistic 
theory (LS) based on an adaption of Howard’s argument for the equilibrium thickness 
of the thermal boundary layer in ordinary turbulent convection. This helpful theory 
waa advanced provisionally because of internal inconsistencies. The mechanistic 
theory also says too much, since some of its equally plausible implications do not agree 
with experiments. Such conflicts are absent from the present theory, the reason being 
that it says so little (despite the ad hoc qualitative assertions used in constructing 
BLI) . 

Part of this work was done at the Geophysical Fluid Dynamics Summer Program, 
under an Office of Naval Research Contract with the Woods Hole Oceanographic 
Institution. 
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